www.eprace.edu.pl » cykl-diadinoksantynowy » Bibliografia

Bibliografia

[1] Academic Dictionaries and Encyclopedias http://en.academic.ru/dic.nsf/enwiki/29729; (dostęp 17.05.2014r.).

[2] R. Nagao, S. Takahashi, T. Suzuki, N. Dohmae, K. Nakazato, T. Tomo, Comparison of oligomeric states and polypeptide compositions of fucoxanthin chlorophyll a/c-binding protein complexes among various diatom species, Photosynth Res 117 (2013), 281–288.

[3] D. Latowski, S. Schaller, M. Olchawa-Pajor, R. Goss, and K. Strzałka, Violaxanthin and Diadinoxanthin Cycles as an Important Photoprotective Mechanism in Photosynthesis, Russ. J. Plant Physl+., 58 (2011), 952–964.

[4] C. Jeffryes, J.Campbell, H. Li, J.Jiao, G. Rorrer, The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices, Energy Environ. Sci., 4 (2011), 3930.

[5] M. Nymark, K. C. Valle, K. Hancke, P. Winge, K. Andresen, G. Johnsen, A. M. Bones, T. Brembu, Molecular and Photosynthetic Responses to Prolonged Darkness and Subsequent Acclimation to Re-Illumination in the Diatom Phaeodactylum tricornutum, PLoS ONE, 8 (2013).

[6] F. A. Depauw, A. Rogato, M. R. d’Alcalá, A. Falciatore, Exploring the molecular basis of responses to light in marine diatoms, J. Exp. Bot., 63 (2012), 1575–1591.

[7] M. Vartanian, J. Desclés, M. Quinet, S. Douady, P. J. Lopez, Plasticity and robustness of pattern formation in the model diatom Phaeodactylum tricornutum, New Phytol., 182 (2009), 429–442.

[8] H. Y. Yamamoto, R. C. Bugos, A. D. Hieber, Biochemistry and Molecular Biology of the Xanthophyll Cycle, The Photochemistry of Carotenoids, Kluwer Academic Publishers (1999), 293–303.

[9] R. Goss, T. Jakob, Regulation and function of xanthophyll cycle-dependent photoprotection in algae, Photosynth Res 106 (2010), 103–122

[10] S. Schaller, C. Wilhelm, K. Strzałka, R. Goss, Investigating the interaction between the violaxanthin cycle enzyme zeaxanthin epoxidase and the thylakoid membrane, J. Photoch. Photobio. B., 114 (2012), 119–125.

[11] M. Eskling, A. Emanuelsson, H. E. Ĺkerlund, Enzymes and Mechanisms for Violaxanthin-Zeaxanthin Conversion rozdział 25 s. 434-435,439, Kluwer Academic Publishers, 2001.

[12] M. Lohr, C. Wilhelm, Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle, Proc. Natl. Acad. Sci. USA Plant Biology 96 (1999), 8784–8789.

[13] R. Goss, J. Nerlich, B. Lepetit, S. Schaller, A. Vieler, C. Wilhelm, The lipid dependence of diadinoxanthin de-epoxidation presents new evidence for a macrodomain organization of the diatom thylakoid membrane, J. Plant Physiol., 166 (2009), 1839—1854.

[14] D. O. Hall, K. K. Rao, Fotosynteza, rozdział 3 s.48-69, rozdział 4 s. 78-81 Wydawnictwa Naukowo- Techniczne, Warszawa 1999

[15] J. Kopcewicz, S. Lewak, Fizjologia roślin, rozdział 5 s. 278 - 291, Wydawnictwo Naukowe PWN, Warszawa 2002

[16] M. Szabó, B. Lepetit , R. Goss, C. Wilhelm, L. Mustárdy, G. Garab, Structurally flexible macro-organization of the pigment–protein complexes of the diatom Phaeodactylum tricornutum, Photosynth Res, 95 (2008), 237–245.

[17] K. Sadaoka , S. Shoji, K. Hirota, Y. Tsukatani, T. Yoshitomi, H. Tamiaki, S. Kashimura, Y. Saga, Pheophytinization kinetics of chlorophyll c under weakly acidic conditions: Effects of acrylic acid residue at the 17-position, Bioorgan. Med. Chem.’ 21 (2013), 6915–6919.

[18] M. Zapata, J. L. Garrido, S. W. Jeffrey, Chlorophyll c Pigments: Current Status, Chlorophylls and Bacteriochlorophylls: Biochemistry, Biophysics, Functions and Applications, Springer (2006), 39–53.

[19] M. H. Walter, D. Strack, Carotenoids and their cleavage products: Biosynthesis and functions, Nat. Prod. Rep., 28 (2011), 663.

[20] M. Dambek, U. Eilers, J. Breitenbach, S. Steiger, C. Büchel, G.Sandmann, Biosynthesis of fucoxanthin and diadinoxanthin and function of initial pathway genes in Phaeodactylum tricornutum, J Exp. Bot., 63 (2012) 5607–5612.

[21] H. Rogl, R. Schodel, H. Lokstein, W. Kuhlbrandt, A. Schubert, Assignment of Spectral Substructures to Pigment-Binding Sites in Higher Plant Light-Harvesting Complex LHC-II, Biochemistry, 41 (2002).

[22] M. Di Valentin, F. Biasibetti, S. Ceola, D. Carbonera, Identification of the Sites of Chlorophyll Triplet Quenching in Relation to the Structure of LHC-II from Higher Plants. Evidence from EPR Spectroscopy, J. Phys. Chem. B, 113 (2009), 13071–13078.

[23] M. Wormit, A. Dreuw, Quantum chemical insights in energy dissipation and carotenoid radical cation formation in light harvesting complexes, Phys. Chem. Chem. Phys., 9 (2007), 2917–2931.

[24] E. Wientjes, I. H. M. van Stokkum, H. van Amerongen, R. Croce, Excitation-Energy Transfer Dynamics of Higher Plant Photosystem I Light-Harvesting Complexes, Biophys. J., 100 (2011), 1372–1380.

[25] R. Nagao, S. Takahashi, T. Suzuki, N. Dohmae, K. Nakazato, T. Tomo, Comparison of oligomeric states and polypeptide compositions of fucoxanthin chlorophyll a/c-binding protein complexes among various diatom species, Photosynth Res., 117 (2013), 281–288.

[26] B. Lepetit, R. Goss, T. Jakob, C. Wilhelm, Molecular dynamics of the diatom thylakoid membrane under different light conditions, Photosynth Res., 111 (2012), 245–257.

[27] I. Grouneva, A. Rokka, E. Aro, The Thylakoid Membrane Proteome of Two Marine Diatoms Outlines Both Diatom-Specific and Species-Specific Features of the Photosynthetic Machinery, J. Proteome Res., 10 (2011), 5338–5353.

[28] R. Goss, D. Latowski, J. Grzyb, A. Vieler, M. Lohr, C. Wilhelm, K. Strzałka, Lipid dependence of diadinoxanthin solubilization and de-epoxidation in artificial membrane systems resembling the lipid composition of the natural thylakoid membrane, Biochimica et Biophysica Acta 1768 (2007), 67–75.

[29] C. Wilhelm, A. Jungandreas, T. Jakob, R. Goss, Light acclimation in diatoms: From phenomenology to mechanisms, Mar. Genomics (2014).

[30] L. Stryer, Biochemia rozdział 11 s. 287-288, Wydawnictwo Naukowe PWN, Warszawa 1999.

[31] E. P. Solomon, L.R. Berg, D. W. Martin, C. A. Ville, Biologia, Multico Oficyna Wydawnicza, Warszawa 1996.

[32] K. Stebelska, P. Wyrozumska, M. Grzybek, A. F. Sikorski, Charakterystyka i medyczne zastosowania konstrukcji liposomowych, Adv. Clin. Exp. Med. 11 (2002), 2, 229-242.

[33] A. Kozubek, A. F. Sikorski, J. Szopa, Molekularna organizacja komórki II. Lipidy, liposomy i błony biologiczne rozdział 3 s. 90 – 93, Wydawnictwo Uniwersytetu Wrocławskiego, Wrocław 1996.

[34] I. Laing, Cultivation of marine unicellular algae, Lab. Leafl. MAFF Direct. Fish. Res., Lowestoft, (1991), 67, 31pp.

[35] T. Fujiki, S. Taguchi, Relationship between light absorption and the xanthophyll-cycle pigments in marine diatoms, Plankton Biol. Ecol. 48 (2001), 2, 96-103.

[36] S. W. Wright, S. W. Jeffrey, Fucoxanthin pigment markers of marine phytoplankton analysed by HPLC and HPTLC, Mar. Ecol. Prog. Ser., 38 (1987), 259-266.

[37] K. Strzałka, I. Hara-Nishimura, M. Nishimura, Changes in physical properties of vacuolar membrane during transformation of protein bodies into vacuoles in germinating pumpkin seeds, Biochimica et Biophysica Acta 1239 (1995) 103-110.

[38] K. Strzałka, A. Kostecka-Gugała, D. Latowski, Carotenoids and Environmental Stress in Plants: Significance of Carotenoid-Mediated Modulation of Membrane Physical Properties, Russ. J. Plant Physl+, 50 (2003), 2, 168–172.


komentarze

Copyright © 2008-2010 EPrace oraz autorzy prac.